307 research outputs found

    Spin-Orbit induced phase-shift in Bi2_{2}Se3_{3} Josephson junctions

    Full text link
    The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift φ0\varphi_0 can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift φ0\varphi_0 in hybrid Josephson junctions fabricated with the topological insulator Bi2_2Se3_3 submitted to an in-plane magnetic field. This anomalous phase shift φ0\varphi_0 is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling

    Universal quantum control of an atomic spin qubit on a surface

    Get PDF
    Scanning tunneling microscopy (STM) enables the bottom-up fabrication of tailored spin systems on a surface that are engineered with atomic precision. When combining STM with electron spin resonance (ESR), these single atomic and molecular spins can be controlled quantum-coherently and utilized as electron-spin qubits. Here we demonstrate universal quantum control of such a spin qubit on a surface by employing coherent control along two distinct directions, achieved with two consecutive radio-frequency (RF) pulses with a well-defined phase difference. We first show transformations of each Cartesian component of a Bloch vector on the quantization axis, followed by ESR-STM detection. Then we demonstrate the ability to generate an arbitrary superposition state of a single spin qubit by using two-axis control schemes, in which experimental data show excellent agreement with simulations. Finally, we present an implementation of two-axis control in dynamical decoupling. Our work extends the scope of STM-based pulsed ESR, highlighting the potential of this technique for quantum gate operations of electron-spin qubits on a surface

    Investigating the n- and p-Type Electrolytic Charging of Colloidal Nanoplatelets

    Get PDF
    We investigate the ion gel gating of 2D colloidal nanoplatelets. We propose a simple, versatile, and air-operable strategy to build electrolyte-gated transistors. We provide evidence that the charges are injected in the quantum states of the nanocrystals. The gating is made possible by the presence of large voids into the NPL films and is sensitive to the availability of the nanocrystals surface

    Investigating the n- and p-Type Electrolytic Charging of Colloidal Nanoplatelets

    Get PDF
    We investigate the ion gel gating of 2D colloidal nanoplatelets. We propose a simple, versatile, and air-operable strategy to build electrolyte-gated transistors. We provide evidence that the charges are injected in the quantum states of the nanocrystals. The gating is made possible by the presence of large voids into the NPL films and is sensitive to the availability of the nanocrystals surface

    Search for new physics with dijet angular distributions in proton-proton collisions at root S = 13 TeV

    Get PDF
    Peer reviewe

    Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using single top quark events in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore